Buckminster Fuller – EVERYTHING I KNOW – Session IX (part 2 of 2)

I made really a lot of working assumptions like that, and tried to use the curves of already developed phenomena, to give me some idea of how fast I could expect the others So when I was really designing a structure a house, the Dymaxion house to have windows all around I was not planning the weight of glass. Glass is very heavy, and so I was waiting on a plastic, and finally a plastic that I would be able to have hermetically sealed It is interesting that three years ago four years ago, now, we installed at Bear Island a geodesic dome with pneumatic pillows, triangular pillows, because they would not wave in the wind, because they were both positive and negative curvature. We filled them with carbon gas because they will not fog up the way air will. Two of those pillows got damaged by little kids the first summer four years ago, but the others have been through, now, four winters and many hurricanes, and they are in absolute perfect shape. It’s interesting how superbly they hold up, and there is no leakage to plastic at this point, and nice clear plastic, so inside you can see the stars, and it is a beautiful dome to live in. My grandson lives in it Now, I just mainly at the moment am talking about, youth is impatient, and I have so many young people, or even middle-aged people who have ideas, and they are terribly impatient about how to get this thing going right in a hurry. And, that’s not the way things are, so I just really want to warn you, and things that you might feel yourself, constrained to commit yourself to, be sure to really make studies about what your expectancy is so that you’re not going to be discontented and so forth and lots of people have thought I’ve been frustrated through all these years, I’ve not been frustrated at all because I realized what’s going on it’s due process and checks and balances, what ever it is, Nature is at work, gestation has been going on. So, I really, it was exciting because I said 45-50 years was my expectancy before you really would see serious use of mass produced houses coming by air and so forth. I think we’re going to be just about on. That was 1927, ’77, that’s quite a long way away and I wouldn’t be at all surprised if we really there’s just no question, I think you’re going to see it They will be running on schedule. So I’d like you to have a feeling of a confidence in the things, provided you don’t just really guess, but do a whole lot of get other rates of change that continguous phenomena that give you some kind of a clue about how long you’re going to wait for something to happen I also would like to introduce just this minute, the, I’ve talked to you a long time about my daughter the first daughter having apparently telepathic sense. And all of us having certain things happen in our lives sometimes, many times, that we can only explain as telepathy And, I began I really felt right from the beginning, after that experience with our little daughter. I don’t have something called magic. If something is going on, and there is some kind of a generalized principle operating here that you may not be familiar with, but you’re going to find out what it is. So the best I could surmise was that there was something called ultra-ultra high frequency electromagnetic waves remember that was in the early twenties, and we don’t have at that time radio waves were a mile long. We didn’t have any short waves. Short waves don’t come in until the ’30’s, and we ended W.W.II, where the shortest wave we had was 2 1/2 meters, but we came out of W.W.II with very much shorter. We were getting down into very small magnitudes And as I said, the higher the frequency the shorter the wave the more interference, and we get into the little ones where there is so much interference you couldn’t send them any distance. That’s why we get these walkie talkies that are very high frequency and such interference you don’t have to get a license because they’re only going to go for a very short distance, so that you don’t it’s not going to involve a whole lot of humanity, or very much of the environment. At any rate, I want you to think about then, the before W.W.II, when the new television was coming and the English already had it the plans were of those in the electronics world the market development to market such phenomena they were planning that television, then, was obviously going to need continual entertainment the way they had announcers people talking on the radio and they said, “it is going to be a much more expensive kind of show, when you’re going to see things.” Therefore they assumed

that it probably would have to hook up with Hollywood or New York, it would not be available in the small towns, the kind of talent you would need to carry on. So they were assuming that they were going to have, because they knew of the interference with the waves and the only bands that had been reserved by the different governments for television were very high frequency, short waves, and so they were assuming coaxial cables running from city to city, and then they would broadcast locally from high masts and would not have any interference problem with the horizon And, so, during W.W.II, it had not been realized that we were going to get more and more use in the radar and so forth, getting into really very, very much shorter waves. And when the War was over, then, and incidentally, we can take a very small we mentioned this before a candlelight by putting a reflector behind it you can concentrate that radiation which is going all directions and it is more effective if you put a lens and bring it down even more and then maybe even get a light of a candle to be seen several miles away as a light house So that you can take very small energy outputs and by “beaming” very much increase the power of the beaming. I became tremendously interested in “beaming” and I wrote quite a lot about it in my book NINE CHAINS TO THE MOON in 1938 when I was Assistant to the Director of Research of Phelps Dodge Corporation, and I was getting into all this copper and much of the electronics world, and I found the I prophesized in NINE CHAINS TO THE MOON published in ’38, that “We will be ‘beaming power'” and I am quite confident that we are quite close to that now Where the business of beaming made me feel, it was very interesting then that during W.W.II we got down to where the waves were short enough to be in a sense reflectable by a very small reflector a reasonably small reflector Otherwise they would have to have something very big. So that, we have then, when the World War was over, and we did get into the television, began then to send the programs from city to city, not by coaxial cable, but by having transceivers, a sending reflector and then a receiving reflector at horizon distances, and you find those all round the country and as they picked up here, and then sent out again, they simply boosted the energies to keep it going, good and well powerful very powerfully done. So the I became very interested then in the further thought that I have this experience of being with audiences thousands of times now, and I’ve got to be able to see the eyes, and something goes on with me and the audiences, and they apparently really do talk to me and I want you to I am reasonably sure, that is one reason why I have been able really quite a few universities where we even started talking at 8 in the morning and ended at 3:30 the next morning, at Cal Poly-tech, things like that, it’s because something goes on between and the people are able to talk to me, or they wouldn’t carry on that long, and I get something back, and do respond to what they are thinking At any rate, I came to the conclusion that it could be that our eyes are transceivers in other words we pick up this way because the waves are so very, very fine, it would be so easy to pick up, and then we send everything back into our television studio in the brain Nothing goes on in the eye, except it is just the transceiver. And it also, then, sends out. And this became very interesting to me I have been going over SYNERGETICS with you and I know that just from your eyes speaking to me, you have been surprised quite a number of times by what you were learning, but I have made in my life, several hundred real mathematical discoveries, that there is no record of anybody knowing of this this was so before this relationship existed. And every time it has happened with me, I have a very peculiar experience. I always have an experience of that this was known long, long ago I call it intellectual mustiness, sort of a feeling of maybe not on earth this has been known by Mind previously and in some very long, long ago time. I get this feeling time and again. That this has been known Wow! But not necessarily on earth. Now, I want you to think about the idea of the eye as a transceiver We know, then, that with very small energies, you can “beam”, but also if you go out through the sky and don’t go through the clouds and so forth, you have, really, very little interference Therefore they have been able to take very low order energy extremely low energy broadcasting and they have “beamed” a signal and bounced it off the moon with incredibly low amount of output. So I said, “It could be that when you and I look out through the sky, look out this way and that, we look at the stars there is a tendency to be very thoughtful looking at those stars, that we may, you know, we might literally be broadcasting, we might be sending out in the stars. And if it doesn’t run into some substance, or run into something it, it would bounce and angle off someplace else and still have some value. But, if you happen to be looking at the moon in the right way you might get a bounce back, if you’re looking at the right point. But not too likely,

you might, but at any rate it seemed to me, it could be, that we might be really broadcasting out signals that don’t run into anything, but just go on and on and on. So, I said, that it could be that when I have had, made a discovery, that I really have received this information from elsewhere. Or that I saw it in the sky or something last night and I began to process it, and by today I am actually saying it. The message has been deciphered and coded and so forth, and I am suddenly getting the message Now, this began to introduce me to the thought that all the knowledge that there is of Universe may have at various times been known to various people in various places and does get sent out into the Universe and gets picked up around the Universe. Now one of the experiences I do have is that and you have it too you have an idea and somebody else, if you don’t do something about it, then tomorrow somebody else has it, and you said “I wish I’d done something with that,” but I think there is an enormous amount of reception of ideas Certain ideas are Synergetically inescapable as a consequence of living in an environment, and this happening and this thing and they just go together and make people think them But there are other ones that seem to be pretty remote, kinds of discoveries that I have made from time to time But, I want then, to further I’m trying continually to let you know how I simply see myself as an average organism and if we begin to pay attention, be just as sensitive as we can be, we may catch on to some of the things that are going on with us, that go on with everybody, and it might be to advantage for us to find out the fact that we have the that we are given are endowed with the capability to find things out, I say we are supposed to be using it. I think this is a very important part of the design of Universe that we are given these capabilities so that we’re really meant to explore alright, and to keep on pushing But, connecting what I am saying to you now with the idea of patience and trying to understand that we may be really human beings are really receivers of information, that we are supposed to be doing certain things on our planet, and the whole thing works with absolutely superb it seems to be you, you don’t have anyone else to say that that’s where you got it, so, you seem to be acting. But I want you to understand, I look at myself really very much as an agent as I am trying to be a very effective agent all of us are. And I’ve tried to be a very responsible custodian of the information, and I’ve been giving you my strategies about that, but look upon there has to be a Mr. X and a Mr. Y in Universe, in history, evolution goes that way. So you can perform Mr. X function. But I don’t make this a personal matter at all. This is something to be done and things can happen for humanity a little more quickly by our being on the alert and really trying to help it happen It’s trying to happen. It’s trying very hard to happen. And I keep trying to see what Nature is trying very HARD to have happen. She’s trying very hard to make man a success. Just trying very, very hard. And he’s so used he’s got such an inferiority complex, he’s so used to being afraid, that he doesn’t heel on it Now I’d like to get back to our picture and so forth, and the last I was giving you airlifts of buildings, and I started off, really however, talking grand strategy, giving you a mini-earth and geoscope and trying to see things in big ways. And part of my seeing things in big ways saw that I’d better get traffic of large environment controls into the air. This would be the most comfortable way for them to go, and if they were well designed they could take the high speeds of hurricane and better velocities of delivery and so forth. So, this picture I am looking at, remember again we had that ten decker for the North Pole. And because I had now found this was feasible, this then made it possible May I have the next picture, I then made myself a world this was before I did my regular map projection. I have rotated the earth in such a way that you would see the most land in one anyone picture. And this was it, and the Riviera was the exact center of that circle Which seemed interesting because a lot of tycoons had found it a pretty good spot to

get into control things. And, at any rate, I made my best picture I could trying to feel our earth as a planet. I wanted to get a sense of planet. And this picture has always had that kind of effect And then, on that planet, now that I knew that I could deliver buildings by air, by zeppelin, I had found that that was practical Then I said, supposing then, by then we might have some world airlines we did not have world airlines at the time there was an over-the-channel flight in England, there was a Florida to Cuba flight at that time I did this, there were possibly one or two other very short jumps I said I’d like to think about World Airlines, and if I could put air deliver to a hostile place where nobody has ever been able to go before, environment controls for maintenance crews, I could then think practically of stepping stone flights and so that I then put on this map, if you look at it carefully, in the upper left there you will see a ten-deck building, and you see one in Greenland right in the middle of Greenland. And you find one way up the Amazon, that’s the lower left, and you see them in the Sahara I air delivered them to places where living was almost impossible for humanity at that time. I had one in Alaska, etc., and so forth. So I then, with these able to be installed at strategic points, I saw that we could have the reasonable expectancy of length of flights for that time to make it possible to have airlines Then I showed on the map, if you begin to look quite carefully, you’ll see little airplanes flying around. There is one right over Dakar, and there is one crossing the South Atlantic, between South America and the Sahara between Dakar. That flight came in. And, at the time, I did this, and if you’ll study this map, it has been published elsewhere, you can find it in the DYMAXION WORLD and so forth, the reproduction here is not really sharp enough to be able to see it, and some of the corners have been cut. But the point is, then, that you’ll find on it, the present major airlines were on here. Stephensen who was a great Arctic explorer at that time told me this was the first map of the world that he was aware of showing the flights of the Arctic And, see, this is a 1927 map. But I also then call this, down at the bottom you can read, I called it a “one town world.” And I saw that if I could have my airlines and the communication, then I really could begin to think about it as a “one town world.” This is really the beginning, later on I invented a term, “Spaceship Earth,” I did that at the University of Michigan in 1951 in a lecture there, and then published it a little time later But, I have been trying very hard at all times to get society that I talked to, to think about the whole of that planet always to think in planetary planning. And, so now we are beginning to bring together geoscopes, seeing the whole earth, seeing and feeling those resources, thinking about how we integrate Taking the information you and I have as of this moment and we have some very extraordinary information at this moment think, we really can put those satellites there, we can do some incredible things, and we’d better start doing them. I said, we are in a very bad moment I’m going to reiterate this, I’ve said this to you before, but the psychological warfare between the great powers who are really going to run the earth, and the working assumption the ecology the great ideology it has to be you or me, there is no question about things have been done to try to make America break down, lose it’s confidence in itself, and to look askance on technology, and really practically hate anything and everything that is its possible salvation. So I would like you to be sure to consider that, and get yourself house cleaned of, get right to what I am going to talk a good deal about my feeling about the great mysteries and God and so forth, but I say really really get onto God and start talking straight the truth, what is it all about Now, I’d like to show you, there is a little footage, a moving picture footage about dealing with airlift, and I’d like to have that come on. This is on the aircraft carrier I think

it is the Ticonderoga, and that’s the elevator coming up through the flight deck. This was done on my birthday, July the 12th, look at the tensions that it is taking up there on her, and they take her up with that nice skin This is a 55 footer that was put together in the 100 and and watch it fly, they fly that at 65 knots that’s full hurricane, and it looks just, just great. (From the audience “How heavy.”) That was 1400 pounds, it was a magnesium frame. 55 footer. Look at her trailing there, that’s at full 65 knots now, she is really out pretty horizontal. And no yawing around, not doing anything like this, very comfortable Now, we’re going to come into some of the other early reductions to practice. And I’d like to go into the Dymaxion House again I had the ten-deck building, and I thought I must get down now down to what the little individual’s own dwelling would be, and this is all in 1927 also. And, so I’d like to go into some of the things that I said I must do with it. I liked the idea of having a single compression mast because a boat, I was a sailor, and I knew then I could hang tensions coming out at different sling angles if you take two suitcases like this it is really quite comfortable, the more you try to go out horizontally the worse the strain, but also the more tautly it gets, so I saw it could have a really tensionally supportive compression rings, like a wire wheel. So I took a wire wheel turned over on its side, let the hub of the wire wheel be the mast and just extend it so then I would have tension coming out here to the compression rings. So it was my first tensegrity idea where I then had discontinuous compression and continuous tension. But I wanted to use gravity all the way through. I think you’d better remove my figure from in front of this, and. you see the mast itself there, and that mast this was really, I don’t think my arrangement of my pictures is right, because I had it without the mast on it. There are tension cables from the top of that mast to the six corners of the hexagon you see flying there, it looks like a halo, and there is a crisscrossing so that they will not rotate around, and, then there was a second set of tensions from the outer hexagon corners down to you see three booms hanging there. Those three booms hanging, they are also then the tension members come back from them down, they come down to the ground and there is crisscrossing so that they won’t rotate I went into the complete study of not just how to make a building, but all the manufacturing and so forth. And the mast that you are looking at there, the top of it is transparent and it is a sun machine. I’m counting on picking up the sunlight and distributing it through the house. You’ll see below the transparent translucent cone of the top, there are louvers, that is where the air for the house is taken in. And just below that there is a little fin, and then below that you’ll see some openings And just inside of that we have a single lighting source, but the lighting source and the heating source for the house are all the same it is a solar system. I’ve a little solar system, and I’m going to bring the big solar system in through the mast whenever it is available to build this energy and heat and light into the house, but also then I found an enormous amount of heat coming from my electric lights, so I might just as well combine the two. And so there was a central lighting there, and then I had transparent no hollow ceilings They are prefabricated and they are triangular form, and hollow, and the end comes up to those little openings in the mast where the light came in, and I had central shuttering, so that you could make any color light over the central light, so your whole ceiling was translucent and it was a reflector; so that the light from the central source then was reflected through this translucent ceiling at any color you want and any magnitude, and she could just simply shutter how much you would like to let in and not let in, but the heat from this central source also came through

holes in this it was perforated translucent ceiling and there was air drawn out around the floor so that the air, whatever temperature it was, would be drawn down to you rather than letting it keep pulling upwardly And, we had, then, also, the windmill for the top of the house, so that you were going to use your windmill power to pull air over preferred circuits. Now, the mast, then, was preassembled with all this equipment in it very much like assembling an airplane or an automobile, so it was a sort of caisson, and it was my prime, and then all the other things folded up in it in pretty small packages May I have the next picture. I’m really quite sorry because I think there was a picture before that earlier that showed the packing crates I had, I designed all my packing crates and everything was good for all the shipping I must be utterly responsible. And, see if you can’t find an earlier picture in there showing those packing crates with the mast standing there it is, there it is, there is the mast, and the septic tank base. Then you’ll see just to the left of the base of the mast, the ceiling pieces that are hollow ceiling pieces made out of aluminum. Then you’ll see to the middle lower left wooden packing cases, and in those are all the space dividers. I said we don’t want any partition just as you shunt past I only want something that stops you where you really are having some machinery that is going to really serve you there anyway It ought to be like, a tree is going to serve you, so you come to a tree and that’s fine These must be very natural stoppings, then between the ends of these pieces of machinery we will have pneumatic sliding doors, and I said you’ll always use a light cell to move it, you mustn’t get hands I found one where the greatest disease transfer is is on doorknobs and so forth, so I want to get rid of those things. So the packing cases there do contain, for instance, there are coat closets, and the coat closets have a vertical hanging they’re hemispherical coat hanger that comes out into the room, the door rotates so that half of the space has a half circle, in a ring, and you have all the clothing hanging from that I’ve seen clothing stores do that now days, but there was no such thing then. Then there was a shoe rack that went around just hanging below the clothes. Then the things that are horizontal, I had shelves that were mounted on cables, that were Pater-Noster (like shelf) and went up, and the shelves could come to the exact height where there was an opening where the children couldn’t get up there until they were the right age to just reach things out, or you could just press a button and watch things go by bookshelves or whatever it is, and then you could take out what you want So, those were the kind of things then I had my prefabricated bathroom. This is 1927 and we did get into, there was no such thing as home dish washing, or home launderers, or anything like that at the time. Nor was there such a thing as home air conditioning. But, I really did bring in all that technology, and very much from the ship, just from the submarine and so forth, I would have to do that. So, all the parts of the house are lying there Next picture. So now that mast, was opposite I showed you already, and then the six compression struts, there were three that were hung from the ones above now three more had been inserted And because it had been pulled in like this, they stay in the compression ring very neatly Then there were some tension plates that have been slung where the floors are going to be Next picture. Then the first floor decking has been put in on top of the slings and then the space dividing machinery have all been installed, and so we can see doorways there We are looking at the present time in a bedroom Now there are two bedrooms, and this was approximately 40 feet in diameter. I did it on a metric system at the time because I wanted to get metric drawings in such an industry. But, you’re looking at one of the two bedrooms and you can see an opening on the wall where the closet, where the shelves come to, and then there was a large utility room which you could call a kitchen, but also the washing machines were in there, and coming through the wall from that was a stove and an icebox and things, where you could get things into the living room out of the far side of it

for the table. The living room was a diamond shaped one, was approximately 40 feet diagonal, corner to corner it was a big room, and then there was a library Then, down below we have the garage and hangar, large enough to put a light plane in there Next picture. This is before those deck plates had been pulled tight. These are not quite the right order Next picture. Now the second floor has been put in and those ceiling pieces that do the reflecting of the light from the central mast have been put in place, and there is where they also deliver the air, they are planary chambers for the air and the light into the various rooms You can see a reflection on the floor of the blue room towards you there. There is a lady lying naked on the bed, there, because this was all air conditioned and so she would not necessarily need very much clothing, because she could make the warm air come to her any ways you want it. But you can see the reflection of the light from the ceiling there on the floor, because I told you the light is now operative in the center of that thing And, next picture. Then they put on the top floor deck for the roof to go on Next picture. Then the railing is put in for that Next picture. And then the canopy. Now that top deck again was very large and it has central drainage so that any rain that comes in beyond the roof there comes to the central and we catch that back into a cistern, so we catch all the rain and anything that lands on the building. You can see the translucent light at the center. Then I said, if you have opaque walls, it is very difficult to let light through them. You can cut a window through but that takes a lot and it is very expensive. What I can do is have transparent walls and then I can just shutter them, which is the way nature really does with your eye shutter they are very delicate membranes When you get down to our only reason for wanting we have something called privacy, and there are four kinds of privacy the olfactory kind of privacy, there’s tactile privacy, there is aural privacy, and there is visual privacy This is the only sensing we have. Therefore, if I can’t smell you I have olfactory privacy If I can’t touch you I’ve got tactile privacy If I can’t hear you I’ve got aural and if I can’t see you then I’ve got visual. So I saw it really takes a very delicate membrane for not seeing, and I noticed that at garden parties in the outdoors, the acoustical absorptions are so good by the grass and the bushes and so forth a group talking over there you can’t hear them over here, really quite a short distance away. The acoustics are so good So I if we could get the right acoustics operating here, we don’t have to get to too very great distances we would then have this occulting, or cutting off of the line of vision And so, you’ll see in the lower left part of the house, the window there, a triangular so I had little aluminum roller screens, that pull over onto the floor and then came up vertically like a camera shutter, than the other one coming down so that the two came together. So they went up like teeth coming together here. And I found that I could then give you all the opaquing you wanted but when you did want to see out you could have a complete seeing out Now, next picture please. I’d like to be out of the picture. Now this is one that I did for, in 1927 the Russian Revolution had been going on for, let’s see ’27 just ten years And they were having mobile farming operations We have mobile farming operations today, but they had then enormous cooperatives they’d move it along to do things and I learned so much from this, dome, rather mast, principle I saw I could use a tripod base, and a mast coming from the tripod with tensions would be a very stable mast, and some good staking down deeply with that you would have great stability, and then I could hang up a structure around it that would make very possible that truck that you see over there is carrying this I thought it would be possible to develop a really pretty first-class mobile dormitory for mobile farm operating teams. And that is what you are looking at there. I published it in SHELTER MAGAZINE in ’30 1930 yes Next picture. There are the, you can see the dormitory things, in there is a central area, and a whole lot of living around it, and I used an airplane wing type, really a foil,

very strong overlapping the other the horizontals for the closure. And that they could be trucked really very, very effectively, and relatively lightly Next picture. Looking there on I have a mast This is the first one I ever made. I made an aluminum mast of three parts, and then I ran my tensions out to a horizontal compression ring of separate tubes with a little universal joint, and then having tension members triangulated this way and triangulated this way. So this was my first real and then It came back to the base again, but it made a sort of a double wire wheel but it was my first tensegrity I want you to understand that I had been thinking and feeling tensegrity long before I got to identify it with my energetic geometry. And had really been able to use it quite effectively in the first Dymaxion House. I say this to you because I feel tremendously tender about Ken Snelson, a very extraordinarily beautiful artist. Ken is a did was a real catalyst, and he changed completely my realization of how I could really use that in my energetic geometry. I had been wanting to use tensegrity, but he gave me all the key, and so I feel very greatly indebted to him But, I say, he’s gone on as an artist, and I think there is a, I know Ken terribly well, there were times when people would say Bucky is stealing your things and so forth, he doesn’t think so anymore. He really appreciates what we are doing. But I want to be sure, I’ve never talked tensegrity without everybody knowing what a part this boy played in this victory Next picture. It gives you a little idea of what I looked like in 1928. This is a map of the drawing of the geodesic of the Dymaxion House turned sideways because of our projector being easier to see things that way. And you’ll see two prefabricated bathrooms at the center, around the mast, and they had in the mast I had an elevator, and the elevator was in a triangular shaft, and it was a tetrahedron itself, so there was no way it could fall out. You can understand, it was triangulated this way, and then it was coming down the track there was just no way it could cock in the shaft so it was a very safe thing, and I found it really quite easy to actually screw yourself up, and if you wanted to do that, it seemed to me that that would be a very, very, very useful way to carry on I also had the center of it also I did have slide-down shafts the way you have in fire houses, which seemed to me to be very desirable way to get out of your house. But here, this whole thing came out three and a half tons And when I did produce the actual first of the Dymaxion Houses at the Beech Aircraft, and I really followed the same mast principles all it came out three tons. That was in 1943-44-43, from 1927, so that it was a beautiful vindication of the calculations of 1927 for the weights to come out alright Next picture please. Will you block me out here? I’m very, very fond of this picture because it was a watercolor done by my wife of the Dymaxion House in those years. We have now been married, we were married in 1917, so we have been married going 57-58 years now. And her support through these years was just incredible, because she had she did not really understand precession and so forth, and I said I’m not going to earn a living, and we just had this beautiful new child that is born after what we had been through, because we almost, due to the enormous pain she went to look out for being the oldest of ten children, she really stayed with her family we were almost apart while I was living around the country working on these houses, and almost separating us, and suddenly this new child, and so that she would go along with me in the experiments was really she, she, it was very, very, extraordinary faith in that I had something. That’s the way she felt about it apparently did At the time, in 1927, when she made this painting of the house, the models had been made and that I have been talking about, she thought that it should be seen in some kind of a proper setting, so she made this lovely rendering And, my brother who was an engineer, three years younger than I am, really a very beautiful boy, he died 15 years ago, but he was very,

very fond of me, but he also didn’t like what, to him, seemed to be a lot of dreaming. And he felt that I got into a lot of trouble, and he felt that I kidded myself a great deal And he was incredibly precise, I think because he simply was worried about me, he even went out of his way to be even more meticulous in the way he said anything The year that this happened I got a telegram from him in Pittsfield where he had gone to work for General Electric and he wrote, he telegraphed me saying, “I’m engaged to be married to the most wonderful girl in Pittsfield.” The other people said “in the world” but he could only check out Pittsfield, and this would be typical of my brother. (Bucky really chuckles about this). And so he always felt very, very badly because I said I was going to wave my hands and open the doors in the Dymaxion house, and he said there is no way to do such nonsense absolutely nonsense. And, not long after this, I got a telegram and it didn’t say “Thank God”, but he indicated that he said “We have discovered and developed the photoelectric cell here, and you can get one of these for 72 dollars, so that I was vindicated about waving your hands and not having door knobs. And, he wrote time and again to say “Bucky, would you please tell me what this Dymaxion House is all about?” And I would tell him what it was all about, and then he would write back and finally my wife saw that I really was quite put out, because he said “I wish you’d stop all that philosophy, and just tell me what it’s all about!” And, so Anne Anne wrote a letter to him that we have, if any of you get that little reprint of 4-D, which we have a record of the letter is in there I think, in which she explained to my brother what it was that I was up to But the only real proof I have that Anne really she really didn’t know what I was talking about but I think that such principles that you would not have to earn a living things like that, she didn’t discuss that part, but she just simply said that she knew I was passionately committed, that I really was convinced that I knew what I was doing. She says that, but it is very important that we have been able to we have lived through a great deal together, and she I think, she was born in January and I was born in July, and in every way we opposed like that, and as I say, where you are so really different if you really can get on then it is really great. But it is very productive, because we are so different. And, I don’t want to have any such meeting as we are having here without having you all know how moved I am by the backing I’ve had. (You can really hear it in Bucky’s voice, here.) May I have the next picture. We really have seen that before Next picture. Now we are coming to the development of the Dymaxion Cars, because underneath my house I had a Dymaxion vehicle, and I was planning to deliver it by air. Therefore it could be delivered to very remote places, and yet it had to have it’s own autonomous equipment so that it would operate where it got to, so it didn’t have to have its methane tanks, and it did have to generate its own energy and gas, and it did have to use the local wind and sun and so forth. But I, if she were going to be delivered by air, then there would be no roadway to get there, therefore I’d have to have some kind of a vehicle that would get me there and make spot landings the way a bird can land, without prepared landing fields and so forth. I’d have to have something that could go possibly overland if I could, if I could go on the highway it would be fine, but I also had to be able to go by air and water. So I wanted to develop an amphibious kind of a vehicle. If you could remove my face from in front of the screen, because I would like to be able to look at what you’re looking at here. I then came to went through the following thoughts, and what I’m going to talk to you about, you will a good many things have happened, really happened quite beautifully I want you to remember I was in the Navy and I was also involved with the early flying of the Navy, and Pat Bellinger who was Commander of my first operation down, when in the Navy I was in charge of all the boats that were patrolling and looking out for the first of the naval aviators who were practicing at Hampton Roads, and where we had our main Naval Air Base station, and we were losing an aviator a day where these single pontoon, or other

boats where they would trip and the aviator, belted in, would be head down in the water The ship upside down And I developed a way of developing very fast boats that had a boom to grapple and pull it up, out into the air, so the water could be gone, so everybody could get underneath and get him out. And that’s what got me sent to the Naval Academy. Well the Pat Bellinger, the Commander of that operation there is the one who did send me to the Naval Academy, was one of the first four fliers of the United States Navy. And he then later on was one of the great Admirals. And, Bellinger and I talked a great deal about propulsion for the airplane, and he would like very much to have seen a turbine, and he was very interested in my idea of a using liquid oxygen to produce, then, very enormous pressures of air. If you let one single drop of liquid oxygen expand in a pre-expansion chamber it would give you extraordinary pressures it would make turbines operate very, very powerfully but they would be cold he wanted something that was not subject to the freezing condition. Because as you got into the sky, in those days they had a lot of trouble about freezing. We had many water-cooled engines, and as we went up, you would get up and put rags on as we got in it got cold as you were getting into great altitude you sat up in your cockpit and put rags on the radiator so it wouldn’t get too cold. Lots of problems about the freezing and getting up going up 45 degrees below so he was very eager to get into, and he liked the idea of steam. But that would get you into freezable water, and so forth. So the idea of liquid oxygen he thought was very good, and I did get into a great deal of inventing and thinking about liquid oxygen propulsion in 1917 And so, coming back then to a vehicle which would get you from here to there where there would be no prepared landings, and no highways, and, you might just be able to come down by air, but you might be able to come by water, you might be able to come by highways some other time an omni-medium vehicle. And I saw that there were two kinds of fundamental flying There is the soaring bird, the gull. But there is also the faster flying bird, the duck And the duck cannot soar. It has really very small wings. And I saw that what happened with the duck is that in the first place I’m going to point out to you, everything in the Universe is in motion, and everything in the Universe is in motion moving in the directions of least resistance I saw it is possible, then, to improve the directions of a preferred a direction you’d like things to go by making it easier to go in that direction. This was something quite different from the propulsion. So that the shape you gave to a boat or an airplane was very important in relation to its having a preferred direction, and you can control that preferred direction and go in that direction the easiest way So I saw that birds are fantastically beautifully streamlined that way and the ship the fish was beautifully designed in this preferred direction. But a lot of things you may not have thought of as having that, I saw did have. As, for instance, I want you to think about a carrot, or various, think of fruits falling from a tree, and it is very necessary to get the seed very deep. And if you’ll look at the shape of the fruit itself, it is streamlined to go in a preferred direction, and the apple drops in such a way, that the seeds get definitely aimed it splatters and it aims those seeds the right direction, so, with force they will keep working down into the earth. You find many of these things, the tubers and so forth, then, are designed to streamlined the carrots, streamlined to come out at the right time It moves out of the land and suddenly breaks away it’s little hair root, like letting a balloon go, and then it’s streamlined and will come right out So I saw Nature used an enormous amount of preferred direction streamlining. So I said, I’m going to think then about how this duck flies. I find what the duck does as you know, we can build up momentum as I gave you just the hammer thrower. So the same way, a pole vaulter, can then, with his pole incidentally, a man a naked man who is a good athlete can high jump to a little bit over the height of the man. But the same man with a pole making him weight more than just the naked man, can then start running towards his bar, and using

his momentum, putting the pole in the ground, then it carries him up where he goes and jumps, sometimes three times the height of a man So, seemingly he has been weighted. With a pole he weighs more than he did when he was going to just high jump by himself so, but he makes up for that by running and building energy into the situation with the momentum So, with the momentum he’s going to go in this direction. When I saw then he could get up, and supposing you gave as he went up over the bar, you had another bar waiting there, because he has the motion going this way then he’d keep going along, he might go along on one pole after another quite a way. And this would tip and then he would grab another and keep on going. So he might carry that momentum quite a long way Now, I saw that what happened with a duck is that the duck starts running on the water literally running on the water really running very hard, he gets up on the surface and scooping his feet right along like that beautifully And, meantime flapping it’s wings very hard It builds up enough momentum forwardly and its streamlining is so superb in the direction of least resistance. It is going really fast, then suddenly where a little bit of air like this like the pole vault gives him a little vertical height. And then with this little vertical extension he now then falls in the direction of least resistance as he leans his head a little more like this gets another pump so he keeps giving himself a new pole vault and he keeps falling in the direction of so you watch the duck going on and he is continually falling and getting new lift and falling, and he gradually builds it up into a little more altitude. Anyone who is a flyer knows, for instance just taking off of the aircraft carrier, that the first thing you do is to nose down towards the water and build up a little more speed by getting gravity to help you, so we’re getting off you always do this. So that is all the duck is it is continually using gravity to accelerate him a little more. Having built altitude, and the gravity is pulling on him but he has the direction of least resistance and enormous forward momentums, therefore, you see, he simply gravity is going to help to pull him this way. So he keeps building that up. So I saw then, when the duck came in for a landing, as he finally got up to a good altitude good speed, he now no longer has to have rather vertical these are what I call air stilts jet stilts. These are jets, he propels, he really propels the air out from under his wing like that, it’s a jet. So he has two jets and those jets are controllable in that direction, so to start off they are quite vertical then, as he gets building up his speed, begins to get them going backward a little more so that they begin to push him forward at the same time. And he finally gets to where he builds up a little lift on his own head and his back, because he is designed that way also, a little longer distance of air over the top of him so he actually begins to build up lift. They do that actually, the blimp flyer, people who fly these rather slow balloon things, then they can put an attitude and begin to get lift on it and then they can really get much more forward out of it So, I saw then that the designing of this duck indicated that we might be able to develop a vehicle without any wings, because the duck was not using wings for soaring, that’s the only reason we had wings on the airplane it is really a soaring device And so, I said, if you do that, then the vehicle will weigh very much less. In order to have wings you have to have very powerful spars and the weight of the airplane is very greatly increased over what it would have to be if you didn’t have wings. Therefore I could have a vehicle weighing very, very little superbly streamlined, and which would, then, have what I called “twin jet stilts.” And they are twin controllable angle jet stilts so that I could start off then running forwardly, and then giving myself a little “jet.” But my jet would be a turbine jet so that there could be more or less of a continuous jet effect, and I was planning on using the liquid hydrogen for my propulsion here. So that your vehicle would have wheels, and you could run along on the ground, build up some and then suddenly give open up the vertical so it would give you some altitude, and the angle of the you’d have two jet stilts, and you’d have them going a little bit outwardly like that so that they would converge above you here above your center of gravity. And the third pole would be the falling pole. Gravity would make the third leg, because then you’ve got your momentum to stabilize that So, I want to come back to another experience you have. If you’ve ever done stilt walking

stilts. Now here you’ve got, I gave you, remember, two poles standing up and they would could go anyway, but two got together and then suddenly they could only act like a hinge. So on stilts you’re on a hinge so you’ve only got two ways you could fall backwards or forwards here So you start to fall a little forward and then you just move the stilt forward and it makes a third leg, and it stops you there So now you’ve got a new hinge and you hinge this way, so you start to go that way and then you move this one over here and it stops you falling in that direction. So, this little delicate falling forward and just simply the ability to change to the third compression member, and that’s always initiatable. So I saw in the same kind of a way, then, as that, my twin jet stilts first giving you the verticality, and then building up momentum forward and getting out flatter and flatter Then when you want to come in for a landing you could do this but your jet stilts can be quite wide, if you want to have the hinge wide or narrow. And all of these would converge above you so that you would be hanging from it, if you were up on top of it, it would be top heavy it must be convergence of the vectors must be above you. At any rate, this was my theory of what we call then Dymaxion Vehicle, and I called it the OMNI-MEDIUM TWIN JETS ORIENTABLE STILTS VEHICLE No TRANSPORT So, obviously, I was not going to be able to get that kind of equipment right away, but I’m quite confident you’re going to see what I have given you, because in the years that have happened since that, suddenly we did come when I talk this way, in ’27, there came a chance in 19 the picture you saw of some little vehicles there. May I come back to that same picture there the first picture in this group. Here you will see some of those vehicles. They are, you can see them on water There is an entry. It is a V-bottom and you see the two points of contact, and these are pictures of my vehicle going through the sky. Those models, I had drawings of them and Noguchi he was a very great sculptor friend of mine made me some very nice clay models and then we made them in plaster and colored them. And the New York automobile show the year before the episode I told you about of Chrysler, was the, this was the year the New Deal came in and everything was absolutely stopped, and they had the hall all hired, and very few people put any automobiles over there, but they had seen my models in an engineering book shop on Park Avenue, so they asked me if I would come to the show, and I did, and I had a booth and talked to I described what the models would do what I hoped the models would do what the theories were I had a great many, very interesting conversations one of them was with Bill Stout who was the man who designed the first Ford tri-motor airplane. And Bill Stout later on then he was President of the American Association the, what is it, the automobile designing group? Society of Automotive Engineers SAE And he wrote a very beautiful article about my vehicle and vehicle theories for their magazine, and then Bill later on built what he called the Scarab car in Detroit a couple of years after I did the Dymaxion Vehicle Now when I did this Dymaxion Vehicle, as a consequence of the automobile show, and then the real things, the Crash, things were really settling down economically, and I, somebody said, “I would like to back you Bucky, you have a whole lot of ideas, and I’d really like to see some of the things” the Depression was completely on and somebody who had some money said, “You might just as well have some of the money I have, because it seems that everything is just going away anyway, and maybe something you could develop would be worthwhile.” So I said, I wrote a little simple, very simple, contract that said, if you’ll let me if I

can spend it all on ice cream sodas if I want, then I’ll take the money, but it must not say what it’s going to do it’s not for profit or anything like that. And that turned out to be a very good contract later on. Because after things began to go, then everybody thought that this person ought to make a lot of money and so forth, but we did not go into it for venture. I was not trying to go into it for I just don’t get anywhere if you’re going out doing things for profit, I learned that in the housing world So, I went then to Bridgeport, Connecticut I went to Bridgeport, Connecticut the day that Franklin Roosevelt declared the bank moratorium it was just the day of his inauguration, and the person had given me the money several weeks before, and I turned it all into cash, and luckily I had turned it all into cash because suddenly the bank moratorium there was no money anywhere, and I arrived in Bridgeport, Connecticut, the only person in town, not only with money, but my pocket was full of it. So I went from being the most ineffective character that ever happened to suddenly being very effective. And everybody wanted to work for me So, everything was shut down, and nobody had any jobs, and I got part of the this is my building in due course. I got the old Dynamometer building, of the old Locomobile automobile, which was a very great automobile in its day And they had gone absolutely bust and the banks owned them, so they rented me this building which had been the Dynamometer building and, which was out on a point of land in the harbor a very nice point. And in there I produced the three Dymaxion Cars. Also up in the front of it you will see a boat upside down. And I got Starling Burgess who was a very great ship designer, but also a great aeronautical designer to come along with me as my engineer A very extraordinary man Starling. Starling to anybody in the sailing world, knows all about him, but not so many other people do know of him. He did, with a man named Dunne who was a very great scientist in England, James Dunne, developed the Burgess Dunne airplane for the United States Navy in 1912, and it was the first hands off landing ship, and it was the first delta wing. There was the delta wing that came in many years later, they suddenly went back and found the Burgess wing but it was a plane where the pilot could literally take his hands off and it could land safely without any trouble at all self landing And then Starling designed he was there, if you are in the yachting world you know there is a six meters, and eight meters and the ten and the twelve meters are very well known the twelve meters are usually in the he had invented all those classes of sailing boats, and designed the best of them. He also designed the last three great “J” boats after W.W.II the cost of boat building so went up that you had to race the 12 meters which were pretty small boats, but the last of the big boats were the “J” boats, and Starling designed that all three of those. Before him, his father, Edward Burgess, had designed three Americas Cup defenders so it was very much of a family tradition. He designed the Puritan, the Bounty and the Mayflower, and they all beat the English And, Starling Burgess’ brother was the chief mathematician for the United States Navy’s “lighter than air” structures. That’s for all the zeppelins and everything he was a very extraordinary mathematician very extraordinary kind of a family Starling himself was very much of a mathematician and but a very eccentric man. He had gone to the same school I had Milton Academy quite a few years before me. And he was terribly interested in my ideas on Dymaxion House and all, and he was very eager to work with me on developing my vehicle. As I said I one thing, I don’t have enough money being given to me to produce a Dymaxion House. That would cost really millions I’d have gone into that very clearly. Further more, I said, I cannot possibly develop the new propulsions means, therefore what I will do, because the automobile world is producing all kinds of equipment that I can use, I can test the ground taxiing qualities of my omni-medium transport, because the most dangerous phase of flying or shipping is when you hit the land whether you hit a rock or whether it contact with the crystalline, because in the air you are in a load distributing element, and once you launch your beautiful ship in the sea, all the loads are beautifully

hydraulically and pneumatically distributed it is terribly safe, until you get to a concentrated load of a rock, or a pier, or another ship, so the most dangerous condition of flying is when you make contact with the earth I saw that with a completely streamlined vehicle when you got on the earth, because if you are a flyer of a light plane you know that she immediately as you land if there is a cross wind she wants to head into the wind and the old planes used to have a great deal of “ground looping” it is called, and this very violent swinging around, maybe you would turn upside down really often crack up a ship just after landing with the cross wind So I said, with the kind of streamlining I’m going to get into the “fairing” has to be absolutely superb, therefore she will want to head into the wind. Therefore, on the highway I can’t control the wind, so her ground taxiing is going to be, how is she going to maneuver? What’s going to happen? So, I built this vehicle to test the ground taxiing qualities of an eventual omni-medium transport. I did not go into designing an automobile. But here it was running on the ground and I had to get a license from the state to be allowed to take it out on the highways, so that in the end everybody called it the Dymaxion Automobile, and many people, incidentally, said to me, after I built three of these, “I’m sorry your car wasn’t a success.” And I’d say “What do you mean?” They said, “Well you didn’t get it into production.” I said, “I wasn’t going into business, I was producing a vehicle And it was extremely successful. I learned an incredible amount.” And actually it has effected it did effect the whole automotive world. They did learn many, many things from that car, I assure you. And they did change a great deal of the grand strategies of the automotive engineering Now it was an interesting vehicle in that it also, like the bird, or the fish and so forth the propulsion is up forward abreast of the center of volume, the center of gravity and so forth, and the steering is in the rear that’s the way a bird, that’s the way nature does it she doesn’t have the fish with it’s tail out in front trying to steer. It seemed to me nothing more stupid than trying to jump overboard and push the bow of the Queen Mary around. Anyway. What you do, because the rudder really uses low pressures and so forth, so it is a beautiful thing to pull this ship around. So I felt, anyway, that the way to do was to do what I said, it would have to be front traction tractor-and rear steering So it was the first vehicle of its kind that I know, that did that, and the only one other thing I’ve seen like that, which has been actually a road cleaner a very slow road sort of thing which you can turn around pretty easy while sweeping the gutters Now, to tell you some more, I’d kind of like to get at the fundamentals of what is going on here. You have a wheelbarrow. And how many of you have pushed a wheelbarrow? Let me see hands. It’s a fairly common experience, right Have you ever been pushing a wheelbarrow quite fast in a field, and then suddenly splat you hit something and it holds you in the stomach? If you put it behind you that doesn’t happen You can go just as fast as you want to over any open field, because you’re pushing it down into the ground that’s your force and if you get a bad bump it’s just going to stop there. But if you’re pulling it, you are lifting it off of the ground you pull it over the humps. So I said if I pull my steering wheel is not going to skid, if I push it down, all the cars we have are front steer and the weight of the they are literally being pushed down into the ground, and that’s why the racing steering has to skid all of its turns. It does not steer around at all. It is a stupid way to have to steer to skid. So really, in all real racing, it’s just a matter of how much angle skid you are really doing. Now once you are in a skid, you really have lost basic control it is really a flying machine now, hah I was just kidding. So it is very important not to get into skid if you really want to keep control, so I’m having a front tractor, and I’m pulling my steering wheel And I assure you it behaved incredibly beautifully Furthermore, now, the front steered car, due to the king pins and so forth, you could only get up to 34 degrees of angle before it blocks itself. And I saw that many times I’d like to turn much more sharply, when going very slowly there’s no reason for not getting much more of an angle. So, with my rear steer I could then have a vertical rudder post and with the single wheel I could give it any angle I wanted. Didn’t run into the blockings of the frame at all. So we had a we had a main frame, which was supported on the front wheels, and long undersprung wheels springs in the front. Automobiles have short springs

in front and long in the rear. And I found what happened with that was that when you go over a bump you get a little, and the second one throws you off the ground. I found that if you have long springs in the front and the shorter in the rear, you go over the first ones, and the other one is contracting as you are going over here soon it compounds you see downwardly. Whenever we get any interference in the Dymaxion you’ll sit down in the seat twice, not going off the seat at all. It was a very, very comfortable feeling Now, these were the things I really needed to try out, and the picture I think it would be a good idea to get me out of the way of this frame. Looking at the frame of that car, I want you to notice all the lightening holes After W.W.II the Italians begin to build racing cars, because in building a structural, as you learn in aeronautics, if you make lightening holes, and if they’re “dished” lightening holes, you not only have the hole but you push the hole through and you make the lip turn up to give it stiffness around the edge of the hole, these are “dished lightening holes”, you can take 25% out of the weight of the structure without really losing any strength. So this is very worthwhile in the web. So this is, then, we had lightening holes wherever you could have lightening holes in my framing my framing was made of chrome-aluminum-steel as aircraft steel, not with mild steel of automobile. This was a very beautiful work of art And, you’re just looking at the front end of the vehicle. The body is going to be mounted on it, so after that base frame, which is pretty well balanced over the front wheels, with the long spring, then we came to what you call and “A” frame, an “A” frame, there were trunions in the rear end of the base frame. The engine was in the rear end of the base frame, and therefore being on the base frame it was directly connected to the banjo(?) gear in the drive shaft, and simply the engine then rotated around the front drive shaft but the only springing was in that way. And then there was an “A” frame, here is the engine mounted here, and here are the wheels up here, and here is the frame, and this trunnions “A” frame and then from the “A” frame there was a cross spring at the end of the base frame, and we had two hangars from the “A” frame which was hinged down to the edge of those springs so that the engine was hung sprung, alright, in this long hinging frame, the whole frame itself would bend on its own part like this. It was a hinge. The frame was a hinge, and it just had a spring to keep it from doing that, so that it was then we had the body was completely separate suspension Had it’s own springs mounted above this, and it had two short Rolls Royce half circle springs back to the base frame, alongside where the inertia of the engine was. So you can look through a little window in the back seat of the car at the engine you could see that going up and down pumping or the “A” frame going like that, not in any way bothering the inertia of the main body which is on its own frame with its own long springs to the front wheel And it was simply a matter of the secondary spring between the body and the and it allowed these things to do anything without really carrying anything through into the body itself at all. Which keeps the body from really tipping too far tipping forward, because we overhang the front axle by quite a lot. The system worked incredibly really beautifully well I never had any ride in history that even mildly touched this in any kind of vehicle May I have some more pictures of the car besides the nice frame pictures. You can see where the front lights are mounted. This is the very first chassis we made. Starling Burgess was sitting up forward there in his flying hat, and the coon coat from the days of the airplanes when the coon coats were being worn, and we were trying out our first chassis and you can see the radiator of the engine in the back there. That’s the drive wheel here is the bow of the ship here is the main drive wheels and you can’t see the rear steering back here, but here’s where the engine is, and that’s where the radiator was inside the

body, and we scooped the air underneath the car to go through the radiator Next picture please. This is the first vehicle we turned out. We built three of them. It was an all aluminum body, and I did use the this was a crystal it was just a celluloid, or crystalloid they called it at the time And the rear cabin. I had on the window top, and I had a periscope so that you could look over your whole car and you could see anybody standing beside the car, back of your tail It was a beautiful thing. And, this one had a scoop for air to go into the ventilator there, and the engines are in the rear, and you just open the back door there and you’ve got the engine on a beautiful workbench. It was very convenient and you lift that rear bustle to get at your rear wheel if you want to change anything there Now, next picture please. Then these are some of the drawings for the second and third cars, I built three of them successively. Each time trying to improve on what was learned Next picture Next picture again. This is very interesting because now, I want you to look at, I have a car the regular four-wheeled car wanting to get into a parking lot. He has to go ahead of position and then back in and it takes him quite a lot of room to get in there. I always could come in head on, and because my rear steering could go over at up to 90 degrees if I wanted, I could simply go sideways I had a round nose, and I’d just bring my round nose there was a window frame right up to whatever was in front of me and then she’d just rotate into place, she’d never advance any more at all you’d just throw your wheels sideways. It was a lovely thing Used to the news reel moving pictures used to just love it, because they would give me 3″ more than the length of my car, and I was coming down the street like that and going fast and no trouble at all. Because there was such a perfect control there. As long as I know knew the 3″ were there I really dared throw my tail over, cause all I had to do was really watch my front window frame and then the car in front of me Now, this is she did all kinds of things in these beautiful ways. And, the, because the, I had the center of gravity of the car nearer the front axle than the rear, all other automobiles have always been nearer the rear axle so that I am really changing the pattern very greatly it meant then that the outboard wheel on a turn the relationship between the center of gravity of your car and the tire where it touched the ground, the outboard wheel needs a fulcrum of overturn. As you go around the turn, what stops you from going forward now is the tire itself, where it touches the ground, and the line of center of gravity of the car pushes at that, so if it is much higher than it by very far it tends to rotate over it But I kept, I said, my center of gravity so low, and so close to the front axle, that it was really like a gun carriage, you couldn’t tip it over. And while I was driving then, I simply kept my wheel accelerating, and therefore it didn’t go into a skid, and I could give it really, very, very sharp turns. I began gradually practicing what I could do, and I would be able to, I finally found that I didn’t want to do it too fast, and I didn’t want to have a tire ripped off it’s rim by the enormous weight of the car just stopping like that I was able to slow down to 15 mph, if I was 15 I could put it into a 180 degree turn and make a turn with the inboard wheel making a circle of 1 foot. I would literally hook around and go this other direction. Now there is no other vehicle in the world that could do that, so that motor cycle policemen would start after me and I am suddenly going the opposite direction, and they couldn’t do anything about it. And they it got to be known all around the motorcycle cops all around the country that it did that, so they were bothering me to try to get me to do it At any rate. There was one occasion when they were opening the first midget racing car track in New York up in the Bronx, and they asked me if I’d bring my car there as a feature for the opening night and I did. And they had me parked out in the middle of the oval of the raceway, and so they had an interval break, and they had all the officials got in my car it would carry 11 passengers, so it was a big vehicle. It was 19 feet long, that was the length of the big Cadillac or of the big cars of the day. But I got an incredible

amount out of it. I got 11 passengers and getting really very high mileages and extraordinary efficiencies. So the car was loaded up with all the officials of the track and they asked me to drive around the track as just a show for the people, so I went I was just going around and I thought I might as well go fairly briskly, so we were going around nicely, and in it you really just sat up like at church, an extraordinary stability So we went around, and I was just really going around quite comfortably, and I thought everybody enjoying themselves, so, they said, “You’ve broken the track record by almost 50 percent!” I could go, I went around the these kid’s cars all skidding around and everything. I really just went around going around like no effort at all, and I broke the track record Well, there were, there were bugs in it, and you had to learn those. Number one were the cross winds, and it really was something She did want terribly to head into a cross wind, and a gusty northwest wind day, cross winds were something. Because I had aircraft stainless steel flexible cables for my steering, because the steering was up front to a geared head on top of our rudder post back aft. So there was no slack in them whatsoever, going through beautiful ball bearing shivs. The kind of shivs you see on sailing boats today, getting to be very lovely kind of shivs you get on racing boats. Starling Burgess was designing, and we made all of our shivs we made everything like that. Got the ball bearings and made some very extraordinary hardware Because he had wanted to design those kind of things for the cup defenders and so forth, he had already gotten into some very beautiful he had already introduced some extraordinary hardware into the nautical world, and he didn’t think anything at all of getting our own hardware for this car So, cross wind, then. What happened was that there was no slack in my steering at all so the tire would distort, because the wind tried to twist me really violently, and the tire, the rubber, just the pneumatic tire would yield. So this could throw whips into you I had to really learn to be very on a very bad cross wind day it was really like flying a plane, you really did have to learn how to play that wind. So it was not something anybody could have right away, and I knew I’d have to improve those features, and if I do build another one someday, I would know how to do it I would point out to you that nature has such problems, and there are one of the oldest creatures known to human beings are the horseshoe crab with this long tail. And they go back to the very earliest of the known creatures Now their job, life is to cross streams. They are in where the tidal streams are and so forth. And they are designed literally to go cross stream, and hydraulics there is no yielding that there is in the pneumatics, so that they have to be superbly designed to go cross wind or across current. They are designed then, with a whole crescent tail, they have a broad nose, but they have a 120 degree crescent where the section through them, you go up through their nose and take a section back from the middle of the nose, it is the same section through the whole 120 degrees so there is no difference in the drag In other words you have to have a broad tail I had a single tail everything focusing down to that tail, and then and it wanted to nose right up into the wind, but by having the broad tail you can do that. That horseshoe crab, then, is able to use its secondary tail to help a little on any sort of delicate balance in addition to that release, it can really make its tail go to increase the tendency to let go of the drag in that direction. So it can go across current, and I found it would be just as easy to do that So later on I was asked by Henry Kaiser to design a vehicle, and I did design it that way, and I designed that one with the rear steering wheel also on an extendible boom, because I found that when you are not going fast, I could really make very, very tight turns really go right around in a circle here locally. In the garage I could turn myself around to go out the other way right on the spot. But with a long boom you couldn’t do that, it was in the way, so that I could have an extendible boom give me a long wheel base on the highway and automatically contract as she began to slow down and lengthen as she speeds Well, that is more or less enough here. At the time of the oh goodness it’s getting late At the time of the Chicago World’s Fair we had two extraordinary events. One a very,

very untoward event the opening of the Chicago World’s Fair in l933 they had wanted to use my Dymaxion House but I had found it would cost much, too much, and I wasn’t willing to make just a mock up of it it had to be the real thing, and so they made a mock up But, in England there was a man called, his title was the Master of Semple it was a Scotch title, and he was the greatest aviator in England in those days, and extraordinarily well thought of. When the Graf Zeppelin made a special first trip over to the Chicago World’s Fair, and the Master of Semple was invited as the English guest to go on the flight to America, to go to the World’s Fair, and the Air Minister of France was on the trip. These two men telephoned me from the Graf Zeppelin over the Atlantic, asking if I could have the Dymaxion Car available for them to see at Chicago with the World’s Fair By this time I let the car go to a man named Al Williams who was the Navy’s #1 speed flyer, and left the Navy to become head of gasoline sales for the Gulf Refining. And Al had acquired my first car for the Gulf Company to use at air meets, and it had become the official car at air meets running around the air field And when this call came I then got in touch with Al Williams, so he had a race driver take the car out to Chicago to meet these two distinguished guests. They, then the car was put at their disposal with this race driver during their visit. The Graf Zeppelin just dropped them off in Chicago and went back to Akron where it could be moored. The day came a few days later when the word came that the Graf Zeppelin was to return to England and these two guest would have to rejoin in the meantime they had driven the car a lot, and they needed the car to get out to the Chicago Airport in a hurry they called in, so at 7 o’clock in the morning went to their hotel, picked the two men up and started out for the Chicago airport when the next thing I knew there was a NEW YORK TIMES full headline FREAK CAR ROLLS OVER AND KILLS RACE DRIVER AND FAMOUS GUESTS WOUNDED injured and so forth And I was in Bridgeport, and the Associated Press got in touch with me where I was building my second car at the time no yes, I had just started we were doing the drawings on the second car, and I flew out, and I had an engineer friend in Chicago. I asked him to go and start investigating just as fast as he could. I telephoned him, and I flew out to Chicago, and we found that the car had been removed from this accident. It had occurred just in front of the main gate of the Chicago World’s Fair, and so we found where the car was it had been put in a garage, and we looked it over very carefully, and we couldn’t find anything wrong with the steering gear or the but it had rolled over, and you may remember, my looking at this and saying this is crystagon and so forth I had it a convertible, and I had an open top with the buttoned on canvas canvas top on it here, so we could open it up, and it did, the there were race they had a Al Williams as a flyer, had put in flying seat belts into it, and the driver had one of those on. The car had rolled over, and the top had punched in, and he had been killed the Air Minister from France was sitting in the rear seat he didn’t have a belt on, and I say this canvass top opened, and he just went out and landed on his feet. The Master of Semple was sitting beside the driver, hurt his head very badly, and he was in the hospital in Chicago in very critical condition We went to the hospital, and they let me listen to him, so if he were to say anything that would give me any kind of clues what had happened While I was sitting waiting, the King of England called up he was a very close friend of his, and it really became very much of an international matter. You can imagine how I was feeling here. My car had killed one man, and another was extraordinarily injured. The Master of Semple did recover thank God! And he, the,

they had a coroner’s inquest on account of the death of the driver, and the coroner’s inquest postponed the coroner postponed the meeting, hoping against the day that the Master of Semple might recover, because he had been driving the car and was familiar with it all, and he might be able to tell them what happened So it was postponed. Sixty days later they had the continued meeting, at which time the Master of Semple told about then that something that had happened to me very, very frequently as they were coming to it was a ten-lane highway, five lanes on either side, and they had been in the outermost lane and a car tried to rubberneck with them. People were always wanting to look at me, and they tried to ride along beside you and getting the it was a very tortuous feeling, these people were looking at you and they were going to run into something So he had accelerated to get away from them and came into the second lane, and this man, then, started to rubberneck some more, he began really pestering, so he finally got to the middle lane, and this man tried to pull upside, and the man hit his tail and through him out of steering. The precession, incidentally, when you do hit this it turns precessionally So, the man who owned the other car was the South Park Commissioner it turned out later And his car had been moved right away. My engineer friend and I had gone to see the policeman who was on the corner at the time it happened, and he didn’t know anything about this at all, but later on when it turned out that it had been a collision and not a freak roll over sixty days afterwards, so the coroner simply said, well it was a mutual responsibility some kind of carelessness but no real fault of anybody. At any rate, it was not the car But my car got an enormous kind of a blow Al Williams, as I said, had been one of the leading Navy fliers, and he said “Bucky your car is in no way responsible, so you’ve really got a great obligation to society to let society know it isn’t the car.” We couldn’t get hardly any publicity about it there is no news like that. And so, at any rate, that’s why I built car #2 and car #3 rather, I had #2 underway, but it’s why I built car #3, to really clean things up. And I think I did wipe out pretty much of that stigma, but you can imagine how I felt, so the I would like to tell you a little more about back in that operation in just the production I said I arrived in Bridgeport the day of the Bank Moratorium and the country had absolutely stopped dead and we started, then, developing these cars. In the end I took on 28 mechanics, very extraordinary skilled men, or draftsmen A total team of 28 in that little building there. And, nobody had any jobs anywhere For those 28 jobs there were way over 1,000 applicants. And as I found I was going to need I set up my own machine shop, my own woodworking shop, and so forth The Rolls Royce Company had opened up an American they were going to produce Rolls Royce in America at Hartford, Connecticut. The boom, the enormous Wall Street Boom just before the crash, so they curtailed that operation but their men were still over in America I got the two leading Rolls Royce body workers to work for me. They were extraordinary craftsmen At any rate, had beautiful Italian machine tool men, and beautiful Polish metal hammer workers and so forth. An extraordinary team At any rate, as I took on my crew, and the applicants nobody had eaten, their families were really starving, and as I, what I did then, when I got too equally good men, I’d find who had the largest family and who hadn’t eaten in the longest time, and I’d take him on. Everyone of the 28 went into tears when I took them on. They were going to be able to go to their family, and it was terrific times I assure you Well, so, remember this is the first day of the New Deal that I am opening up there. Then, later on they got the WPA going so they got some jobs, and then they got all kind of inventive jobs and so forth. At any rate, I found that when I was finishing my car, I really only

had enough money to produce this one car, and as I got nearer and I explained to everybody I was just going to build this one car, I wasn’t going into business, I wasn’t there to make a profit, I was simply wanting to demonstrate a vehicle and see whether my principles were right. Because the dynamics of this were very critical. So you all understand then that they couldn’t have been better craftsmen, they loved their work, but as they got near the end of it they realized that this is the end of that job, and my family WPA hadn’t made things it was only six months gone by and they, without any conspiracy whatsoever, each one just slowed up like that. I couldn’t get my car finished. The only way I got the car finished was to start car #2, and then everybody got the first car finished We have here a moving picture of the launching of that first car, it just runs for a very short moment, I think it would be a nice way to end this evenings session. Can we have that little show? That’s Amelia Earhart standing there in the middle, and to her right is Sir Kingsford Smith who flew the Southern Cross first across the Pacific. That’s with a little model of my chassis of my car. Amelia Airhart was a very, very great friend of mine. She just really loved my car, that model no longer exists. Amelia that’s Sir Charles Kingsford Smith, she received the gold medal of the National Geographic in Washington and Mrs Roosevelt asked her to come down and stay with her at the White House, and Amelia said “Bucky, if I’m going down there that’s Starling Burgess by the way the older man by the tail there Amelia said, “Bucky I’d like to have your car to be my official car so that your car can really be in on the celebration,” which was darling of her. But she did things like that all the time. I just saw a man, Coffin, who was the first flyer for Curtis Wright. These were all the wonderful crew I had there the 28 boys in their flying fish coats. Now I’m handling look at how she turns! (Lots of appreciation from the audience.) She was a lovely vehicle! That’s Starling Burgess at the microphone there, with the Mayor of Bridgeport and a man named Scottie, that mechanic there. There, the local automobile company had a kind of a small raceway there and we were running up and down and people came from all over the countryside to see it At the Chicago World’s Fair, another session, the next year, with my car that’s Frank Coffin, I said the first flyer for Curtis Wright the first man who flew under the Brooklyn Bridge You can see that canvas top which I am sorry to say the button-on canvas top where the driver got killed. You can also see the window of my periscope there. But she was really superbly turned out. Starling Burgess making building boats for the richest, most powerful yachtsmen in the world, and Starling just said, “you never turn out half-finished work, it really has to be really beautiful.” If you have a principle to demonstrate don’t let it suffer because you haven’t turned it out right I was somewhat of a fattie then. I hadn’t eaten for years, and, suddenly I had enough money while I was building this thing I was staying in a boarding house in Connecticut, where they had cake and everything, and I really just ate everything I had been starving for so long The, got to the Chicago World’s Fair, and are we still on? We went to the Chicago World’s

Fair the second year, I was going to fight it out again, and they had my car do several things. Used to have it doing “waltzing” down in the main it could waltz it really could dance very beautifully. Then every, twice a day they wanted me to run it completely through the fairgrounds as a feature, and then I would end up at the what was called “The Wings of a Century,” and “The Wings of a Century” was an enormous pageant because Chicago had been the great railroad center, so they had all the great locomotives of early history from the earliest locomotives on because they had these great railroad yards there and they rode railroad cars and everything out in front of the grand stand of the “Wings of a Century,” The final episode of the show had me the Dymaxion Car after they had all these 20th century, and all the fast trains and so forth, and I would come in from the Wing it was quite an open space I suppose I would have a length of a football field to get accelerated, so I really could come in very fast, and I got to the middle of the stage in front of the grand stand, and I would slow to about 15 miles per hour, put on my brakes and then throw it into a complete ground loop, and everybody in the stands went up, they were sure that I was going over you see They’d see me spinning around and I had this fundamental steering so that once you let go of your wheel she would go absolutely in the direction at the time you let go, so that I am sitting on the seat alright. They had a place they wanted me to take position up in the backstage where all these vehicles were all around, so I’d just be spinning around, so then she’d go right up to it very lovely But it was a she redeemed herself very much in that second year, and that, again, brought Henry Ford’s great interest, and he did all kinds of things, incidentally to help me, during He telephoned to me at Bridgeport when he heard I was doing what I was doing, and he gave me 70 percent discount on anything that Ford Company made that I could possibly use, so I bought Ford engines, and things like that at cost, and I used the, this was the year of the first Ford V-8. So I had his first Ford V-8, and I put aluminum heads on it and things like that and cut down the increased the compression just a little bit, but, I did get up to 128 mph, and all due to this wonderful streamlining. Many times we would go out with another car of the same weight it had to be a pretty good sized Cadillac or a Packard. We’d get them absolutely weighing the same, and we’d get out on a main highway, a good very flat highway on a stilled wind early morning and we’d accelerate up to 60, and I had somebody sitting in both car beside the driver, and he would shut off the engine, and we’d throw out the clutch instantly and then let them slide see how far they would go. The wind resistance of my car was so low that I really went, you know, something fantastic, maybe a half mile further than the other car They really started off really fast it was incredibly low speed, I can’t really tell you what it really was a very, great, large differential. She was faired completely underneath her belly absolutely faired all the way. Not just a mouse track with open down at the bottom our present cars are very, very resistive underneath but not this car Well, all I can tell you is that I’m oh here, here is my car at Wichita, Kansas a number of years later, and to the left is my Seabee, that was my plane. I am surprised how much resemblance there really was between this and the airplane. And that’s the picture that, incidentally, Whitlow talks to you about Ed quite often Now, what has happened since is that we did get into the flying bedstead. We did get into, but Starling Burgess used to say, “Bucky, I think your principle would work for just a little altitude above water, that’s the most it could possibly do…” He did think that it might be able to get enough altitude but he didn’t think it could fly any height. But since that time we now have the United States Marines using the Jetto you know we have what they call the “Jetto” and these are really rockets you can get real extraordinary where you take a plane then, where they’ve had trouble getting off they put these Jetto assists, they’re little rockets under the wings, and it really gets enormous acceleration to get off of the polar areas and things like that. Well, then, now they got a tiny little pod they began to put onto helicopters helicopters where they have a rotor where the wing itself, drives itself around, and they began putting Jetto assists on those and I saw tiny little ram jets, just like a fountain pen put on there, the Jetto assist and then the ram jet two were put on the end of and the helicopter, the Marine Corps helicopter that thing really going fantastically vertical take off So then we get where the Marine’s were getting then to have this little apparatus where, in their two hands they have these Jettos and they’re jumping over the barn have you seen them doing it? Well, the point is, they can have a lot of trouble when they tried to make the Marines really tried to make my vehicle and they did not have the center,

the convergence of the vectors above the center of gravity that comes down here, and they got them rolling rolling over. The principles worked, I assure you, and it really I’m really quite confident of what I’ve talked to you about. You will see this vehicle in due course, and we’re getting to the point where it is now really practical to have a harness, you put this harness on, and you can have your jet stilts, and I you can go to the window and you can dial yourself a programming now of the directional controls and so forth, so just go to the window and go home. (Lots of chuckles from the audience.) Put on the right clothes But, we are humanity is going to do these kinds of things and humanity is going to be doing the ultra-ultra-high frequency telepathy These are the things that are going to be the surprise items, that are not in the package of human beings to be dealing in now. But I have lived through enough of these things to really feel great confidence in telling you, just really whatever you can do, you’re going to have to do, and you will do